Geometrie im Raum

Der Quader - Volumen und Oberfläche

Lisa von onmathe • Juli 26, 2024
Der Quader - Volumen und Oberfläche

In diesem Beitrag erklären wir dir an einem einfachen Beispiel, wie du das Volumen und die Oberfläche eines Quaders berechnest. Außerdem haben wir Übungsaufgaben, mit denen du dein Wissen testen kannst.
Merke
Volumen: \(V= {\textcolor{green}{G}} \cdot {\textcolor{orangered}{h}} \)
\( \hspace{1.4cm} V= {\textcolor{green}{a}} \cdot {\textcolor{green}{b}} \cdot {\textcolor{orangered}{h}} \)
GGrundfläche
hHöhe
Oberfläche: \(O= 2 \cdot {\textcolor{green}{G}} + {\textcolor{blue}{M}} \)
\( \hspace{1.8cm} O= 2 \cdot {\textcolor{green}{a}} \cdot {\textcolor{green}{b}} + 2 \cdot {\textcolor{green}{a}} \cdot {\textcolor{orangered}{h}} + 2 \cdot {\textcolor{green}{b}} \cdot {\textcolor{orangered}{h}} \)
MMantel
Quader erkennen
Weißt du, was ein Quader ist? Schau dich um: Pakete, Müslischachteln, Puzzlekisten – all diese Schachteln sind Quader.
Auch der Raum, in dem du sitzt, ist ein Quader.

Ein Quader ist ein Körper, der aus 6 rechteckigen Flächen besteht. Die Flächen, die sich gegenüber liegen, sind jeweils gleich groß und parallel zueinander.

Die Grundfläche des Quaders

Die grün gestreifte Fläche, die den Boden des Quaders bildet, ist die Grundfläche. Da sie für alle Berechnungen am Quader wichtig ist, betrachten wir sie zuerst.
Beispiel
\( {\textcolor{green}{a= 4 \ cm}} \hspace{1cm} {\textcolor{green}{b=3 \ cm}} \)
Jeder Quader ist aus einzelnen Rechtecken zusammengesetzt. Auch die Grundfläche ist eines davon, also nutzen wir die Formel für Rechtecke, um ihre Fläche zu berechnen.
\(A=a \cdot b\)
\(A= 4 \cdot 3\)
\(A= 12 \ cm^2 \ \ = {\textcolor{green}{G}}\)
Die Grundfläche des Quaders ist \(12 \ cm^2\) groß.
Die Einheit von Flächen
\(A= a \cdot b\)
\(A= 4 \ {\textcolor{orangered}{cm}} \cdot 3 \ {\textcolor{orangered}{cm}}\)
Wir rechnen \( {\textcolor{orangered}{cm}} \cdot {\textcolor{orangered}{cm}} \), was sich mit einem Quadrat zu \( {\textcolor{orangered}{cm^2}} \) zusammenfassen lässt. Die beiden Zahlen werden einfach multipliziert.
\(A= 4 \cdot 3 \ {\textcolor{orangered}{cm^2}} \)
\(A= 12 \ {\textcolor{orangered}{cm^2}} \)
Flächeninhalt Rechteck
\(A=a \cdot b\)
Merk dir → Fläche = Seite \(\cdot\) Seite
Warum zeigen wir dir eine Formel, wenn du dir etwas anderes merken sollst?
In Formelsammlungen findest du diese Formel. Aber was, wenn die Seiten in deiner Aufgabe nicht a und b, sondern x und y oder Peter und Hugo heißen? Wie rechnest du dann?

Es ist immer besser, sich klarzumachen, wie eine Formel aufgebaut ist und sie zu verstehen. Das macht es leichter, sie sich zu merken, und anzuwenden.

Merke dir also, dass du den Flächeninhalt eines Rechtecks berechnest, indem du die beiden Seiten, die sich in einer Ecke treffen, miteinander multiplizierst.
talentstark
Zeit für Nachhilfe die funktioniert Sichere dir deine kostenlose Probestunde.

Das Volumen eines Quaders

Das Volumen ist der Wert, der beschreibt, wie viel Platz ein Körper benötigt. Stell dir vor, du füllst einen Pool mit Wasser. Der Raum, den das Wasser einnimmt, ist das Volumen.
Beispiel
\( {\textcolor{green}{a= 4 \ cm}} \hspace{1cm} {\textcolor{green}{b=3 \ cm}} \hspace{1cm} {\textcolor{orangered}{h=3 \ cm}} \)
Die Formel, um das Volumen eines Quaders zu berechnen, ist das Produkt aus Grundfläche und Höhe des Quaders.
\(V= {\textcolor{green}{G}} \cdot {\textcolor{orangered}{h}} \)
Die Grundfläche haben wir bereits berechnet.
\( {\textcolor{green}{G= 12cm^2}} \hspace{0.6cm} {\textcolor{orangered}{h= 3cm}}\)
\( V= {\textcolor{green}{12}} \cdot {\textcolor{orangered}{3}} \)
\( V= 36 \ cm^3 \)
Du kannst das Volumen eines Quaders auch direkt berechnen, ohne zuerst die Grundfläche zu bestimmen.
Dazu verwendest du die Formel zur Berechnung der Grundfläche direkt in der Volumenformel.
\(V= \underbrace{{\textcolor{green}{a}} \cdot {\textcolor{green}{b}}}_{{\textcolor{green}{G}}} \cdot {\textcolor{orangered}{h}} \)
\( V= {\textcolor{green}{4}} \cdot {\textcolor{green}{3}} \cdot {\textcolor{orangered}{3}} \)
\( V= 36 \ cm^3 \)
Die Einheit des Volumens
\( V= G \cdot h \)
\( V= 12 \ {\textcolor{orangered}{cm^2}} \cdot 3 \ {\textcolor{orangered}{cm}} \)
\( V= 12 \ {\textcolor{orangered}{cm \cdot cm}} \cdot 3 \ {\textcolor{orangered}{cm}} \)
Wir rechnen \( {\textcolor{orangered}{cm}} \cdot {\textcolor{orangered}{cm}} \cdot {\textcolor{orangered}{cm}} \), was sich zu \( {\textcolor{orangered}{cm^3}} \) zusammenfassen lässt. Die beiden Zahlen werden einfach multipliziert.
\( V= 12 \cdot 3 \ {\textcolor{orangered}{cm^3}} \)
\( V= 36 \ {\textcolor{orangered}{cm^3}} \)
Merke
\(V= {\textcolor{green}{G}} \cdot {\textcolor{orangered}{h}} \)
Volumen = Grundfläche \( \cdot \) Höhe

Die Oberfläche eines Quaders

Die Oberfläche ist die äußere Fläche eines Gegenstands, also der Teil, den du von außen sehen und anfassen kannst.
Wenn du ein Geschenk einpacken möchtest, ist die Oberfläche das Papier, das du benötigst, um es vollständig zu bedecken.

Ein Quader ist ein Körper, der aus Rechtecken besteht.
Dabei sind immer die beiden sich gegenüberliegenden Flächen parallel und in ihrer Fläche identisch.
Das nutzen wir zur Berechnung der Oberfläche.
Beispiel
\( {\textcolor{green}{a= 4 \ cm}} \hspace{1cm} {\textcolor{green}{b=3 \ cm}} \hspace{1cm} {\textcolor{orangered}{h=3 \ cm}} \)
Die Grundfläche haben wir bereits berechnet. Jetzt betrachten wir die Mantelfläche.
Sie besteht aus 4 Flächen. Vorne und hinten die beiden identischen Flächen \({\textcolor{blue}{M_1}}\), links und rechts die beiden identischen Flächen \({\textcolor{blue}{M_2}}\) . Das bedeutet:
\({\textcolor{blue}{M}}= 2 \cdot {\textcolor{blue}{M_1}} + 2 \cdot {\textcolor{blue}{M_2}}\)
Die Fläche \({\textcolor{blue}{M_1}}\) wird aufgespannt von den Seiten a und h.
\({\textcolor{blue}{M_1}}= {\textcolor{green}{a}} \cdot {\textcolor{orangered}{h}}\)
\({\textcolor{blue}{M_1}}= {\textcolor{green}{4}} \cdot {\textcolor{orangered}{3}} \)
\({\textcolor{blue}{M_1}}= 12 \ cm^2\)
Die Fläche \({\textcolor{blue}{M_2}}\) wird aufgespannt von den Seiten b und h.
\({\textcolor{blue}{M_2}}= {\textcolor{green}{b}} \cdot {\textcolor{orangered}{h}} \)
\({\textcolor{blue}{M_2}}= {\textcolor{green}{3}} \cdot {\textcolor{orangered}{3}} \)
\({\textcolor{blue}{M_2}}= 9 \ cm^2\)
Damit lässt sich der Mantel berechnen...
\({\textcolor{blue}{M}}= 2 \cdot {\textcolor{blue}{M_1}} + 2 \cdot {\textcolor{blue}{M_2}}\)
\({\textcolor{blue}{M}}= 2 \cdot {\textcolor{blue}{12}} + 2 \cdot {\textcolor{blue}{9}}\)
\({\textcolor{blue}{M}}= 42 \ cm^2 \)
...und schließlich die Oberfläche.
\(O= 2 \cdot {\textcolor{green}{G}} + {\textcolor{blue}{M}} \)
\(O= 2 \cdot {\textcolor{green}{12}} + {\textcolor{blue}{42}} \)
\(O= 66 \ cm^2\)
Du kannst die Oberfläche eines Quaders auch direkt berechnen, ohne zuerst Grundfläche und Mantelfläche zu bestimmen.
Dazu verwendest du die Formeln zur Berechnung von Grundfläche und Mantelfläche direkt in der Oberflächenformel.
\( O= 2 \cdot \underbrace{{\textcolor{green}{a}} \cdot {\textcolor{green}{b}}}_{{\textcolor{green}{G}}} + 2 \cdot \underbrace{{\textcolor{green}{a}} \cdot {\textcolor{orangered}{h}}}_{{\textcolor{blue}{M_1}}} + 2 \cdot \underbrace{{\textcolor{green}{b}} \cdot {\textcolor{orangered}{h}}}_{{\textcolor{blue}{M_2}}} \)
\( O= 2 \cdot {\textcolor{green}{4}} \cdot {\textcolor{green}{3}} + 2 \cdot {\textcolor{green}{4}} \cdot {\textcolor{orangered}{3}} + 2 \cdot {\textcolor{green}{3}} \cdot {\textcolor{orangered}{3}} \)
\( O= 24 + 24 + 18 \)
\(O= 66 \ cm^2\)
Merke
\(O= 2 \cdot {\textcolor{green}{G}} + {\textcolor{blue}{M}} \)
Oberfläche = 2 \(\cdot\) Grundfläche \(+\) Mantel
talentstark
Zeit für Nachhilfe die funktioniert Sichere dir deine kostenlose Probestunde.

Der Würfel - auch nur ein Quader

In Formelsammlungen, gibt es spezielle Formeln für den Würfel. Wir zeigen dir, warum du dir diese nicht extra merken musst.

Schauen wir uns den Würfel an, sehen wir, dass er aus 6 rechteckigen Flächen besteht. Immer zwei der Flächen liegen einander gegenüber, sind parallel und identisch. Das bedeutet:

Ein Würfel ist ein Quader!
Ein Quader, der aus 6 quadratischen Flächen besteht. Und ein Quadrat ist nichts anderes als ein Rechteck, mit 4 gleich langen Seiten.
Beispiel
\({\textcolor{green}{a= 5 \ cm}} \hspace{1cm} {\textcolor{orangered}{h= 5 \ cm}} \)

Grundfläche

\({\textcolor{green}{G}}= {\textcolor{green}{a}} \cdot {\textcolor{green}{a}} \)
\({\textcolor{green}{G}}= {\textcolor{green}{a^2}} \)
\({\textcolor{green}{G}}= {\textcolor{green}{5^2}} \)
\({\textcolor{green}{G}}= {\textcolor{green}{25 \ cm^2 }} \)

Volumen

\(V= {\textcolor{green}{G}} \cdot {\textcolor{orangered}{h}} \)
\(V= {\textcolor{green}{25}} \cdot {\textcolor{orangered}{5}} \)
\(V= 125 \ cm^3 \)

Oberfläche

Jetzt machen wir uns zu nutze, dass beim Würfel alle 6 Flächen gleich groß sind:
\(O= 6 \cdot {\textcolor{green}{G}} \)
\(O= 6 \cdot {\textcolor{green}{25}} \)
\(O= 150 \ cm^2 \)

Je mehr Formeln du lernst, desto schwerer wird es, sich alles zu merken. Daher ist es wichtig, Formeln zu verstehen. So musst du weniger auswendig lernen und kannst in Klassenarbeiten Zusammenhänge verstehen und Transferaufgaben lösen.

Aufgaben

Aufgabe 1

Berechne Volumen und Oberfläche der folgenden Körper.
\(a= 3 \ cm \hspace{1cm} b=2 \ cm \hspace{1cm} h=5 \ cm \)

\(a= 3 \ cm \hspace{1cm} a=3 \ cm \hspace{1cm} h=3 \ cm\)

Aufgabe 2

Hannes baut einen Pool in seinem Garten. Er soll 8m lang, 4m breit und 2m tief werden. Wie viel Kubikmeter Wasser braucht Hannes, um den Pool bis zum Rand zu füllen?

Aufgabe 3

In einem Trinkpäckchen sind \(0,2 \ dm^3 \) Saft. Der Boden des Päckchens hat eine Fläche von \(0,4 \ dm^2 \). Wie hoch ist das Saftpäckchen?

Lösungen

Lösung 1

Berechne Volumen und Oberfläche der folgenden Körper.
\(a= 3 \ cm \hspace{1cm} b=2 \ cm \hspace{1cm} h=5 \ cm \)

Lösung: \( \hspace{0.7cm} V= 30 \ cm^3 \hspace{0.7cm} O= 62 \ cm^2 \)

\(a= 3 \ cm \hspace{1cm} a=3 \ cm \hspace{1cm} h=3 \ cm\)

Lösung: \( \hspace{0.7cm} V= 27 \ cm^3 \hspace{0.7cm} O= 54 \ cm^2 \)

Aufgabe 2

Hannes baut einen Pool in seinem Garten. Er soll 8m lang, 4m breit und 2m tief werden. Wie viel Kubikmeter Wasser braucht Hannes, um den Pool bis zum Rand zu füllen?

Lösung: Hannes braucht 64 Kubikmeter Wasser.

Aufgabe 3

In einem Trinkpäckchen sind \(0,2 \ dm^3 \) Saft. Der Boden des Päckchens hat eine Fläche von \(0,4 \ dm^2 \). Wie hoch ist das Saftpäckchen?

Lösung: Das Saftpäckchen ist \(0,5 \ dm \) hoch.